Olympia Academy
NEET/JEE Main/IIT Foundation Courses Tirupattur, Vellore-D.t
Olympia
Academy
II-50%
- ONE MARK - REVISION EXAM - 2016
A
MATHEMATICS
CLASS : XII MARKS : 100
[ CHAP
– 5,6,7,8,10 B.B & C.B ] TIME : 1.00 hrs
I.
Choose the correct answer : 100
x 1 = 100
1. The gradient of the curve y = -2x3 +3x + 5 at x = 2 is
1)
-20 2) 27 3) -16 4) -21
2. The
velocity v of a particle moving along
a straight line when at a distance x
from the origin is
given
by a
+ bv2 = x2 where a and b are
constants. Then the acceleration is
1)
2)
3)
4)

3. The
slope of the normal to the curve y = 3x2
at the point whose x coordinate
is 2 is
1)
2)
3)
4)
4. The
equation of the normal to the curve
at the point
is
is
1) 3
= 27t - 80 2) 5
= 27 t -80 3) 3
= 27 t + 80 4)
5. The
parametric equation of the curve x2/3
+ y2/3 = a2/3 are
1) x
= a sin3 q
, y = a cos3 q 2) x = a
cos3 q , y = a sin3 q
3) x = a3 sin q , y = a3
cos q 4) x = a3 cos q , y = a3 sin q
6. What is the surface area of a sphere
when the volume is increasing at the same rate as its radius?
1) 1 2)
3) 4
4)
7. If
y = 6x - x3 and
x increases at the rate of 5 units per second, the rate of change of
slope when x = 3 is
1) -90 units/sec 2)90 units/sec 3)180
units/sec 4)-180 units/sec
8. The
angle between the parabolas y2
= x and x2 = y at the origin is
1)
2)
3)
4)

9. The
value of ‘a’ so that the curves y = 3ex and y =
intersect orthogonally is
1) -1 2)
1 3)
4) 3
10. The
Rolle’s constant for the function y
= x2 on [ -2, 2] is
1)
2)
0 3) 2 4) -2
11. The value of ‘c’ of
Lagranges Mean Value Theorem for f (x) =
when a = 1 and
b = 4 is
1)
2)
3)
4)

12. If
f (a) = 2; f ' (a)
= 1 ; g (a) = -1 ; g ' (a) = 2, then the value of 
is
1) 5 2) -5 3) 3 4) -3
13. The
function f (x) = x2 is decreasing in
1) (
-
,
) 2) ( -
, 0 ) 3)
( 0,
) 4) ( -2,
)
14. The
least possible perimeter of a rectangle of
area 100 m2 is
1.
10 2. 20 3. 40 4. 60
15. Which
of the following curves is concave down?
1) y
= - x 2 2) y
= x 2 3) y
= e x 4) y
= x2 + 2x - 3
16. If u = x y then
is equal to
1)
yxy-1 2)
u log x 3) u log y 4) xyx-1
17. The
curve y2(x-2) = x2(1+x) has
1)
an asymptote parallel to x-axis 2)
an asymptote parallel to y-axis
3)
asymptotes parallel to both axes 4)
no asymptotes
18. If
u
= log
, then
is
, then
1) 0 2) u 3) 2 u 4)
u-1
19. An
asymptote to the curve y2 (a + 2x) = x2 (3a - x) is
1)
x = 3a 2) x = -
3) x
=
4)
x = 0
20. If u =
f
then
is equal to
1)
0 2) 1 3) 2u 4)
u
21. If u = sin - 1
and f =
sinu, then f is a homogeneous function
of degree
and f =
sinu, then f is a homogeneous function
of degree
1)
0 2) 1 3) 2 4) 4
22. If u =
, then 
, then
1)
2)
u 3)
4)
- u
23. Identify
the true statements in the following:
(i)
If
a curve is symmetrical about the origin, then it is symmetrical about
both axes.
(ii)
If a curve is symmetrical about
both the axes, then it is symmetrical about the origin.
(iii)
A curve f (x, y)
= 0 is symmetrical about the line y =
x
if f (x, y) =
f (y, x).
(iv)
For the curve f (x, y) = 0,
if f (x, y) = f
(-y, - x), then it is symmetrical about the origin.
1.
(ii), (iii) 2. (i),
(iv) 3. (i), (iii) 4. (ii), (iv)
24. The percentage error in the 11th root of the number 28 is approximately _________ times
the
percentage
error in 28.
1)
2)
3)
11 4) 28
25. The
curve 9y2 = x2(4-x2)
is symmetrical about
1.
y-axis 2. x-axis 3. y = x 4. both the axes
26. The
value of
is 1)
2)
3)
0 4) 
is 1)
27. The
value of
is 1)
2) 0 3)
4) 
is 1)
28. The
value of
is
is
1)
2)
3)
4)

29. The value of
is
is
1.
2.
3.
0 4. 
30. The
value of
is
is
1)
2)
3)
4)
0
31. The
area of the region bounded by the graph
of y = sinx and y
= cosx between x = 0 and
x =
is
1)
2)
3)
2
4)
2
32. The
area bounded by the parabola y2
= x and its latus rectum is
1)
2)
3)
4)

33. The
volume, when the curve y =
from x = 0
to x
= 4 is rotated about x- axis is
1) 100
2)
3)
4)

34. Volume of solid obtained by revolving the
area of the ellipse
about major and minor axes are in the ratio
1) b2 : a2 2) a2 : b2 3) a : b 4) b : a
35. The
length of the arc of the curve x2/3 + y2/3 = 4 is
1)
48 2) 24 3) 12 4) 96
36. The curved surface area of a sphere of
radius 5, intercepted between two parallel planes of distance 2 and 4
from the centre is
1) 20
2) 40
3)10
4)
30
37. The
value of
is
is
1) 0 2) 2 3) log 2 4) log 4
38. The
value of
is
is
1.
2.
3.
0 4.
39. The
area bounded by the line y = x, the
x-axis, the ordinates x = 1, x = 2 is
1)
2)
3)
4)

40. The area
between the ellipse
and its
auxillary circle is
1)
b(a - b) 2)
2
a (a - b) 3)
a (a - b) 4)
2
b ( a - b)
41. The integrating factor of
is
1)
log x 2) x2 3) ex 4) x
42. The
integrating factor of dx +
xdy = e-y sec2
y dy is
1) ex 2) e-x 3) ey 4) e-y
43. The
solution of
+ mx = 0 , where
m < 0 is
1) x
= cemy 2) x = ce-my 3) x = my + c 4) x = c
44. The
differential equation
is
is
1.
of order 2 and degree 1 2.
of order 1 and degree 2
3.
of order 1 and degree 6 4.
of order 1 and degree 3
45. The differential equation of all circles
with centre at the origin is
1) x
dy + y dx = 0 2) x dy - y dx = 0 3) x dx + y dy = 0 4) x
dx - y dy = 0
46. The
complementary function of (D2
+ 1 ) y = e2x is
1) (Ax + B)ex 2) A cos x +B sinx 3) (Ax + B)e2 x 4) (Ax + B)e-x
47. The differential equation of the family of lines y = mx
is
1)
= m 2)
y dx - xdy = 0 3)
4)
ydx + xdy = 0
48. The
degree of the differential equation c=
, where c is
a constant is
, where c is
a constant is
1) 1 2) 3 3) -2 4) 2
49. The
differential equation satisfied by all the straight lines in xy-plane
is
1.
= a constant 2.
3.
y+
= 0 4.

50. The
differential equation obtained by
eliminating a and b from y = ae3x + be-3x is
1)
2)
3)
4) 
51. If f ¢(x) =
and f
(1) = 2, then f (x) is
1)
2)
3)
4) 
52. The
particular integral of (3D2 +
D-14)y = 13e2x is
1) 26xe2x 2)13xe2x 3) xe2x 4)

53. The
particular integral of the differential
equation f (D) y = eax ,
where f (D) = (D-a) g(D),
g(a) ¹0 is
1)
meax 2)
3)
g(a)eax 4)

54. If cos x is an integrating factor of the differential
equation
+ Py = Q , then P =
1)
-cot x 2) cot x 3) tan x 4) -tan x
55. The
integrating factor of
is
1) ex 2) log x 3)
4)
e-x
56. A
random variable X has the following probability distribution
X
|
0
|
1
|
2
|
3
|
4
|
5
|
P(X=x)
|
2a
|
3a
|
4a
|
5a
|
Then P(1
x
4) is
1)
2)
3)
4) 
57. X is a discrete random variable which takes
the values 0, 1, 2 and P(X=0) =
,
P(X=1)
=
, then the value of
P(X =2 ) is
1.
2.
3.
4.

58. Given
E(X+ c) = 8 and E(X-c) = 12 then the value of c
is
1) -2 2) 4 3) -4 4) 2
59. Variance
of the random variable X is 4. Its mean is 2. Then E(X2) is
1) 2 2) 4 3) 6 4) 8
60. Var (4X + 3) is
1) 7 2) 16 Var(X) 3) 19 4) 0
61. The
mean of a binomial distribution is 5 and its its standard deviation is 2. Then the value
of n
and p are
1.
2.
3.
4. 
62. In 16 throws of a die getting an even
number is considered a success. Then the
variance of
the successes is
1. 4 2. 6 3. 2 4.
256
63. If 2
cards are drawn from a well shuffled pack of 52 cards, the probability that
they
are of the same colours without replacement, is
1)
2)
3)
4)

64. If a
random variable X follows Poisson distribution such that E(X2 ) = 30, then the variance
of the distribution is
1. 6 2. 5 3. 30 4. 25
65. For
a Poisson distribution with parameter
=0.25 the value of the 2nd moment about the origin is
1)0.25 2)0.3125 3)0.0625 4)0.025
66. If
is a p.d. f. of a
normal distribution with mean
, then
is
1. 1 2. 0.5 3. 0 4.
0.25
67. If
is a p.d. f. of a normal variate X and
X ~ N(
,
), then
is
1.
undefined 2. 1 3. 0.5 4.
-0.5
68. The
marks secured by 400 students in a Mathematics test were normally distributed
with mean 65. If 120 students got more marks above 85, the
number of students securing marks between 45 and 65 is
1)120 2)20 3)80 4)160
69. The
random variable X follows normal distribution f(x) = c
. Then the
value of ‘c’ is
1)
2)
3) 5
4)
70. In a
Poisson distribution if P(X = 2)
=P(X=3) then the value of its parameter
is
1) 6
2) 2 3) 3 4) 0
71. Let ‘h' be the height of the tank. Then the rate of change of pressure ‘p’ of the tank with respect to height is
1.
2.
3.
4.

72. Food pockets were
dropped from an helicopter during the flood and distance fallen in ‘t’ seconds is given by
(g = 9.8 m/
). Then the speed of the food pocket after it has
fallen for ‘2’ seconds is
1.
19.6 m/sec 2. 9.8 m/sec 3. -19.6 m/sec 4. -9.8 m/sec
73. A continuous graph y = f (x)
is such that
as
at
. Then
has a
1. vertical tangent y
=
2.
horizontal tangent x =
3.
vertical tangent x =
4.
horizontal tangent y = 
74. The
point that separates the convex part of a continuous curve from the concave
part is
1.
the maximum point 2.
the minimum point
3.
the inflection point 4.
critical point
75. Which
of the following statement is incorrect?
1.
Initial velocity means velocity at t = 0
2.
Initial acceleration means acceleration at
t = 0
3.
If the motion is upward, at the maximum height, the velocity is not zero
4.
If the motion is horizontal, v = 0 when the particle comes to rest
76. In
the law of mean, the value
satisfies the condition
1.
2.
3.
4.

77. If
is a differentiable
function of x and y ; x and y are
differentiable functions of ‘t’ then
1.
2.

3.
4. 
78. The
differential on y of the function
is
1.
2.
3.
4. 0
79. The
differential of
is
1.
2. 
3.
4.

80. The
curve
has
1.
only one loop between x=0 and x=1
2.
two loops between x=-1 and x=0
3.
two loops between x=-1 and 0; 0 and 1
4.
no loop
81. The
x-intercept of the curve
is
1.
2. 6, 0 3.
4.

82. The curve
is symmetrical about
1. x-axis only 2.
y-axis only 3. both the axes 4. both the axes and origin
83. If f(x) is even function
is
is
1. 0 2. 2
3.
4. -2
3.
4. -2
84.
is
is
1.
2.
3.
4. 
2.
3.
4. 
85. The surface area
obtained by revolving the area bounded by the curve y= f(x), the two ordinates x=a,
x=b and x-axis, about x-axis is
1.
2.
3. 2
4.2

2.
3. 2
4.2
86. If
, then 
1.
2.

3.
4.

87. The
arc length of the curve y = f(x) from x=a to x=b is
1.
2.
2.
3.
2
4.2

4.2
88.
is
is
1.
-
2.
3. -
4. 2
2.
3. -
4. 2
89.
The order and degree of the differential equation
are
1. 2, 1 2. 1,
2 3.
1, 1 4. 2,2
90.
The order and degree of the differential equation
are
1. 1, 1 2. 1, 2 3. 2, 1 4. 0, 1
91.
The order and degree of the differential equation
are
1. 2, 1 2. 1, 2 3. 2,
4. 2,2
92.
The order and degree of the differential equation
are
1. 1, 1 2. 1, 2 3. 2, 1 4. 2,2
93.
The solution of a linear
differential equation
where P and Q are
functions of x is
1.
2.

3.
4.

94.
The solution of a linear
differential equation
where P and Q are
functions of y is
1.
2.

3.
4.

95. A
continuous random variable takes
1.
only a finite number of values
2.
all possible values between certain
given limits
3.
infinite number of values
4.
a finite or countable number of values
96. A
continuous random variable X has probability density function ‘f(x)’ then
1.
2.
3.
4. 
97. Which
of the following is or are correct regarding normal distribution curve ?
a.
symmetrical about the line X =
(mean)
b.
Mean = median = mode
c.
unimodal
d.
Points of inflection are at X = 
1.
a, b only 2. b,d only 3. a.b,c only 4. all
98. For
a standard normal distribution the mean and variance are
1.
2.
3.
0, 1 4. 1, 1
99. If X is a continuous random variable then which
of the following is incorrect ?
1.
2.

3.
4.

100. Which of the following is not true regarding the normal
distribution?
1.
skewness is zero. 2.
mean = median = mode
3.
the points of inflection are at X =
4. maximum height of the curve is 

RKV MATRIC HIGHER SECONDARY SCHOOL – JEDARPALAYAM
II-50%
- ONE MARK - REVISION EXAM - 2016
MATHEMATICS
CLASS : XII MARKS : 100
DATE : 05.11.16 [
CHAP – 5,6,7,8 & 10 B.B.& C.B ]
TIME : 1.00 hrs
I.
Choose the correct answer : 100
x 1 = 100
1. x = 2 ,y; y = -2x3 +3x + 5 vd;w tistiuapd; rha;t[
1)
-20 2) 27 3) -16 4) -21
2. MjpapypUe;J xU neh;f;nfhl;oy; x bjhiytpy; efUk;
g[s;spapd; jpirntfk; v vdt[k; a +bv2 = x2 vdt[k; bfhLf;fg;gl;Ls;sJ/ ,';F a kw;Wk; b khwpypfs;/ mjd;
KLf;fk; MdJ
1)
2)
3)
4)

3. y = 3x2 vd;w tistiuf;F x ,d; Maj;bjhiyt[ 2 vdf; bfhz;Ls;s g[s;spapy; br';nfhl;od; rha;thdJ 1)
2)
3)
4)
4.
vDk; tistiuf;F
g[s;sp
vd;w g[s;spapy;
br';nfhl;od; rkd;ghL
vd;w g[s;spapy;
br';nfhl;od; rkd;ghL
1) 3
= 27t - 80 2) 5
= 27 t -80 3) 3
= 27 t + 80 4)
5.
vDk; tistiuapd; Jiz myFr; rkd;ghLfs;
a) x
= a sin3 q
, y = a cos3 q c) x = a
cos3 q , y = a sin3 q
b) x = a3 sin q , y = a3
cos q d) x = a3 cos q , y = a3 sin q
6. xU nfhsj;jpd; fd mst[ kw;Wk; Muj;jpy;
Vw;gLk; khWtPj';fs; vz;zstpy; rkkhf ,Uf;Fk; nghJ nfhsj;jpd; tisgug;g[
1) 1 2)
3)
4
4)
7. y =
6x - x3 nkYk; x MdJ tpdhof;F 5
myFfs;
tPjj;jpy; mjpfhpf;fpd;wJ/
x
= 3 vDk; nghJ
mjd; rha;tpd; khWtPjk;
1)
-90 myFfs;/tpdho 3) 90 myFfs;/tpdho
3) 180 myFfs;/tpdho
4) -180
myFfs;/tpdho
8. y2
= x kw;Wk; x2
= y vd;w
gutisa';fSf;fpilna Mjpapy; mika[k; nfhzk;
1)
2)
3)
4)

9. y =
3ex kw;Wk; y =
vd;Dk; tistiufs;
br';Fj;jhf btl;of; bfhs;fpd;wd vdpy; ‘a’ ,d; kjpg;g[ 1)
-1 2)1 3)
4) 3
10. y = x2
vd;w rhh;gpw;F
[ -2, 2] ,y; nuhypd; khwpyp
1)
2)
0 3) 2 4) -2
11. a = 1 kw;Wk; b = 4 vdf; bfhz;L. f (x) =
vd;w rhh;gpw;F
byf;uh";rpapd; ,ilkjpg;g[j; njw;wj;jpd;go mika[k; ‘c’ ,d; kjpg;g[
1)
2)
3)
4)

12. f (a) = 2; f ' (a) = 1 ; g
(a) = -1 ; g ' (a) = 2 vdpy;
,d; kjpg;g[
1) 5 2) -5 3) 3 4) -3
13/ f (x) = x2
vd;w rhh;g[ ,w';Fk; ,ilbtsp
1) (
-
,
) 2) ( -
, 0 ) 3)
( 0,
) 4) ( -2,
)
14. 100 kP 2 gug;g[ bfhz;Ls;s brt;tfj;jpd;
kPr;rpW Rw;wst[
1.
10 2. 20 3. 40 4. 60
15. gpd;tUk;
tistiufSs; vJ fPH;nehf;fp FHpt[ bgw;Ws;sJ>
1) y
= - x 2 2) y
= x 2 3) y
= e x 4) y
= x2 + 2x - 3
16. u = x y vdpy;
f;Fr; rkkhdJ
1) yx y-1 2) u log x 3) u log y 4) xy x-1
17. y 2 ( x - 2 ) = x2
( 1 + x ) vd;w
tistiuf;F
1) x - mr;Rf;F ,izahd xU bjhiyj; bjhLnfhL cz;L
2) y - mr;Rf;F ,izahd xU bjhiyj; bjhLnfhL cz;L
3) ,U mr;RfSf;Fk; ,izahd bjhiyj; bjhLnfhLfs; cz;L
4)
bjhiyj;
bjhLnfhLfs; ,y;iy
18. u = log
vdpy;
vd;gJ
vdpy;
1)
0 2) u 3) 2u 4) u-1
19. y2 (a + 2x) = x2
(3a - x) vd;w tistiuapd; bjhiyj; bjhLnfhL
1)
x = 3a 2) x = -a/2 3) x = a/2 4) x = 0
20. u = f
vdpy;.
,d; kjpg;g[
1) 0 2)1 3) 2u 4) u
21. u = sin - 1
kw;Wk; f = sin u vdpy;. rkgoj;jhd rhh;g[ f ,d;go
kw;Wk; f = sin u vdpy;. rkgoj;jhd rhh;g[ f ,d;go
1)
0 2) 1 3) 2 4) 4
22. u =
vdpy;
1)
2) u 3)
4) - u
vdpy;
23/ gpd;tUtdtw;Ws;
rhpahd Tw;Wfs;:
1)
xU tistiu
Mjpia bghWj;J rkr;rPh; bgw;wpUg;gpd; mJ ,U
mr;Rfisg; bghWj;JK; rkr;rPh;
bgw;wpUf;Fk;/
2) xU tistiu ,U mr;Rfisg; bghWj;J rkr;rPh; bgw;wpUg;gpd; mJ
Mjpiag; bghWj;Jk; rkr;rPh;
bgw;wpUf;Fk;/
3) f (x , y) = 0 vd;w tistiu y = x vd;w nfhl;ilg;
bghWj;J rkr;rPh;
bgw;Ws;sJ
vdpy; f (x , y) = f ( y , x)
4)
f (x , y) = 0 vd;w tistiuf;F f (x , y) = f
(-y , -x ) cz;ikahapd;
mJ
Mjpiag; bghWj;J rkr;rPh;
bgw;wpUf;Fk;/
1)
(ii), (iii) 2) (i),
(iv) 3)
(i), (iii) 4)(ii),
(iv)
24. 28
,d; 11 Mk; go rjtpfpjg;
gpiH njhuhakhf 28 ,d; rjtpfpjg; gpiHiag; nghy; _____ kl';fhFk;/
1)
2)
3)
11 4) 28
25. 9y2 = x2(4-x2)
vd;w tistiu
vjw;F rkr;rPh;>
1)
y -mr;R 2) x -mr;R 3) y = x 4)
,U mr;Rfs;
26.
,d; kjpg;g[ 1)
2)
3)0 4)

,d; kjpg;g[ 1)
27.
,d; kjpg;g[ 1)
2) 0 3)
4) 
,d; kjpg;g[ 1)
28.
,d; kjpg;g[ 1)
2)
3)
4) 
,d; kjpg;g[ 1)
29.
,d; kjpg;g[ 1.
2.
3.
0 4.

,d; kjpg;g[ 1.
30.
,d; kjpg;g[ 1)
2)
3)
4) 0
,d; kjpg;g[ 1)
31. x = 0 ,ypUe;J x =
tiuapyhd y = sinx kw;Wk; y = cos x vd;w tistiufspd; ,ilg;gl;l gug;g[
1)
2)
3)
2
4)
2
32. gutis y2
= x f;Fk; mjd;
brt;tfyj;jpw;Fk; ,ilg;gl;l gug;g[
1)
2)
3)
4)

33. y =
vd;w tistiu x = 0 tpypUe;J x = 4 tiu x- mr;ir mr;rhf
itj;Jr; RHw;wg;gLk;
jplg;bghUspd; fd mst[
1) 100
2)
3)
4)

34.
vd;w ePs;tl;lj;jpd;
gug;ig bel;lr;R. Fw;wr;R ,tw;iw bghWj;Jr;
RHw;wg;gLk; jplg;bghUspd; fd mst[fspd; tpfpjk;
1) b2 : a2 2) a2 : b2 3) a : b 4) b : a
35. x2/3 + y2/3
= 4 vd;w tistiuapd; tpy;ypd; ePsk;
1)
48 2) 24 3) 12 4) 96
36/ Muk; 5 cs;s nfhsj;ij
js';fs; ikaj;jpypUe;J 2 kw;Wk; 4 J}uj;jpy; btl;Lk; ,U ,izahd js';fSf;F ,ilg;gl;l gFjpapd; tisg;gug;g[
1)
20
2) 40
3)10
4)
30
37.
,d; kjpg;g[
,d; kjpg;g[
1)0 2) 2 3) log 2 4) log 4
38.
,d; kjpg;g[
,d; kjpg;g[
1.
2.
3.
0 4.
39. y = x vd;w nfhl;ow;Fk; x-
mr;R. nfhLfs; x = 1 kw;Wk; x = 2 Mfpatw;wpw;Fk; ,ilg;gl;l mu';fj;jpd;
gug;g[
1)
2)
3)
4)

40.
vd;w ePs;
tl;lj;jpw;Fk; mjd; Jiz tl;lj;jpw;Fk; ,ilg;gl;l gug;g[
1)
b(a - b) 2)
2
a (a - b) 3)
a (a - b) 4)
2
b ( a - b)
41.
vd;w tiff;bfGr; rkd;ghl;od; bjhiff; fhuzp
1)
log x 2) x2 3) ex 4) x
42. dx + xdy = e-y sec2 y dy ,d; bjhiff; fhuzp
1) ex 2) e-x 3) ey 4) e-y
43. m <
0, Mf ,Ug;gpd;
+ mx = 0 ,d; jPh;t[
1) x = cemy 2) x = ce-my 3) x = my + c 4) x = c
44.
vd;w tiff;bfGtpd;
vd;w tiff;bfGtpd;
1) thpir 2 kw;Wk; go 1 2) thpir 1 kw;Wk; go 2
3) thpir 1 kw;Wk; go 6 4)
thpir 1
kw;Wk; go 3
45/ Mjpg;g[s;spia ikakhff;
bfhz;l tl;l';fspd; bjhFg;gpd; tiff;bfGr;
rkd;ghL
1) x dy + y dx = 0 2) x dy - y dx = 0 3)
x dx + y dy = 0 4) x dx - y dy = 0
46. (D2 + 1 ) y = e2x ,d; epug;g[r; rhh;g[
1) (Ax + B)ex 2) A cos x +B sinx 3) (Ax + B)e2 x 4) (Ax + B)e-x
47. y = mx vd;w neh;f;nfhLfspd; bjhFg;gpd; tiff;bfGr; rkd;ghL
1)
= m 2)
y dx - xdy = 0 3)
4)
ydx + xdy = 0
48. c =
vd;w tiff;bfGr;
rkd;ghl;od; go
vd;w tiff;bfGr;
rkd;ghl;od; go
1) 1 2) 3 3) -2 4) 2
49. xy- jsj;jpYs;s vy;yh neh;f;nfhLfspd; bjhFg;gpd; tiff; bfGr; rkd;ghL
1.
= xU khwpyp 2.
3.
y+
= 0 4.

50. y = ae3x + be-3x vd;w rkd;ghl;oy; a iaa[k; b iaa[k; ePf;fpf; fpilf;Fk;
tiff;bfGr; rkd;ghL
1)
2)
3)
4) 
51. f ¢(x) =
kw;Wk; f (1)
= 2 vdpy; f (x)
vd;gJ
1)
2)
3)
4) 
52. (3D2 + D-14)y = 13e2x ,d; rpwg;g[r; jPh;t[
1) 26xe2x 2)13xe2x 3) xe2x 4)
x2/2e2x
53. f (D) = (D-a) g(D) ,
g(a) ¹0 vdpy; tiff;bfGr; rkd;ghL
f (D) y = eax ,d;
rpwg;g[j; jPh;t[
1)
meax 2)
3)
g(a)eax 4)

54.
+Py = Q vd;w tiff;bfGr;
rkd;ghl;od; bjhiff; fhuzp cos x
vdpy;. P ,d; kjpg;g[
1)
-cot x 2) cot x 3) tan x 4) -tan x
55.
,d; bjhiff; fhuzp
1) ex 2) log x 3)
4)
e-x
56. X vd;w rktha;g;g[ khwpapd; epfH;jft[g; guty; gpd;tUkhW:
X
|
0
|
1
|
2
|
3
|
4
|
5
|
P(x = X)
|
1/4
|
2a
|
3a
|
4a
|
5a
|
1/4
|
P(1£ x £ 4) ,d; kjpg;g[
1)
2)
3)
4) 
57. X vd;w xU jdpepiy rktha;g;g[ khwp 0 , 1 , 2 vd;w kjpg;g[fisf;
bfhs;fpwJ/ nkYk; P (X= 0) =
, vdpy; P (X = 1) =
, vdpy; P(X = 2
) ,d; kjpg;g[
1.
2.
3.
4.

58. E(X+
c) = 8 kw;Wk; E (x-c) = 12 vdpy; c ,d; kjpg;g[
1)
-2 2) 4 3) -4 4) 2
59. X vd;w rktha;g;g[ khwpapd; gutw;go 4 nkYk; ruhrhp 2 vdpy; E(X2) ,d;
kjpg;g[
1) 2 2) 4 3) 6 4) 8
60. Var
(4X + 3) ,d;
kjpg;g[
1) 7 2) 16Var(X) 3) 19 4) 0
61. xU <UWg;g[g;
gutypd; ruhrhp 5 nkYk; jpl;ltpyf;fk; 2 vdpy; n kw;Wk;
p ,d; kjp;gg[fs;
1.
2.
3.
4. 
62. xU gfilia 16 Kiwfs; tPRk; nghJ.
,ul;ilg;gil vz; fpilg;gJ btw;wpahFk; vdpy; btw;wpapd; gutw;go
1)4 2)6 3)2 4)256
63. ed;F fiyf;fg;gl;l 52 rPl;Lfs; bfhz;l
rPl;Lf;fl;oypUe;J 2 rPl;Lfs; vLf;fg;gLfpd;wd/ ,uz;Lk; xnu epwj;jpy; ,Uf;f
epfH;jft[
1)
2)
3)
4) 
64. xU rktha;g;g[ khwp X gha;!hd; gutiyg; gpd;gw;WfpwJ/ nkYk; E(X2) =
30 vdpy; gutypd; gutw;go
1)6 2)5 3)30 4)25
65. gha;!hd; gutypd; gz;gsit
=0.25 vdpy; ,uz;lhtJ tpyf;fg; bgUf;Fj; bjhif
1)0.25 2)0.3125 3)0.0625 4)0.025
66. xU ,ay;epiyg;
gutypd; epfH;jft[ mlh;j;jpr; rhh;g[ f
(x) ,d;
ruhrhp
m vdpy;
,d; kjpg;g[
1)1 2)0.5 3)0 4)0.25
67. xU ,ay;epiy khwp X ,d; epfH;jft[ mlh;j;jpr; rhh;g[ f(x) kw;Wk;
X~N(m , s2) vdpy;
1) tiuaWf;f KoahjJ 2)1 3)
0.5 4) -0.5
68. 400 khzth;fs; vGjpa fzpjj; njh;tpd; kjpg;bgz;fs; ,ay;epiyg; gutiy
xj;jpUf;fpwJ/ ,jd; ruhrhp 65. nkYk; 120 khzth;fs; 85 kjpg;bgz;fSf;F nky; bgw;wpUg;gpd;. kjpg;bgz;fs; 45
,ypUe;J 65
f;Fs; bgWk;
khzth;fspd; vz;zpf;if
1)120 2)20 3)80 4)160
69. xU rktha;g;g[ khwp X , ,ay;epiyg; guty; f(x)=c
I gpd;gw;WfpwJ vdpy;
c ,d;
kjpg;g[
1)
2)
3) 5
4)
70. xU gha;!hd; gutypy; P(X
= 2) = P(X =3) vdpy;.
gz;gsit
,d; kjpg;g[
1)6 2)2 3)3 4)0
71/ xU ePu;j; bjhl;oapd; cauk;
vd;f/ mj;bjhl;oapd;
mGj;jk;
MdJ cauj;ijg; bghWj;J khWk; tPjk;
1/
2/
3/
4/ 
72/ bts;sg; bgUf;fj;jpd; nghJ K:yk; ,lg;gl;l czt[g;
bghUl;fs; 
tpdhoapy; fle;j J}uk;
kP
tpdho2)
vdpy; mJ nghlg;gl;l 2?tpdhofSf;Fg; gpd; mg;bghUspd; ntfk;/
1/ 19/6 kP
tpdho 2/ 9/8 kP
tpdho
3/ ?19/6 kP
tpdho 4/ ?9/8 kP
tpdho
73/ bjhlu;r;rpahd tistiu
MdJ
vd;w
g[s;spapy;
vDk;nghJ
vdpy;
f;F
1/
vd;w epiyf;Fj;jhd
bjhLnfhL cz;L
2/
vd;w fpilkl;l
bjhLnfhL cz;L
3/
vd;w epiyf;Fj;jhd
bjhLnfhL cz;L
4/
vd;w fpilkl;l
bjhLnfhL cz;L
74/ xU bjhlu;r;rpahd tistiuapy; FHpt[ gFjpapypUe;J
Ftpt[ gFjpahf khw;wk; bgWk; g[s;sp
1/ bgUk g[s;sp 2/ rpWk g[s;sp
3/ tist[ khw;Wg; g[s;sp 4/ khWepiyg;g[s;sp
75.
fPH;f;fhQqk; Tw;wpy; vJ rupay;y>
1
bjhlf;f jpirntfk; vd;gJ
tpYs;s
jpirntfk;
2
bjhlf;f KLf;fk; vd;gJ
tpYs;s
KLf;fk;
3 xU
Jfs; br';Fj;jhfr; brd;W mjpfgl;r cauk; mila[k; nghJ mjd;
jpirntfk; g{r;rpaky;y
4/
xU JfshdJ fpilkl;l ,af;fj;jpy; njf;f epiyf;F tUk; neuj;jpy;
76/ ,ilkjpg;g[ tpjpapd;go
tpd;
kjpg;g[ ve;j epge;jidia epiwt[ bra;a
ntz;Lk;/
1/
2.
3.
4.

77/
vd;gJ
x kw;Wk; y ,y; tifaplj;jf;f rhu;g[/ nkYk;
kw;Wk;
vd;git
My;
Md tifaplj;jf;f rhu;g[fs; vdpy;
1/
2/ 
3/
4/ 
78.
vdpy;
,d;
tifaPL
1/
2.
3.
4. 0
79.
,d;
tifaPL
1/
2.
3.
4. 
80.
vd;w
tistiu
1/
kw;Wk;
f;fpilna
xU fz;zp bgw;Ws;sJ
2.
kw;Wk;
f;fpilna ,U fz;zpfis
bgw;Ws;sJ
3/
kw;Wk;
kw;Wk; 1 fSf;fpilna
,U fz;zpfs; bgw;Ws;sJ/
4/ fz;zpfs; VJk; bgwtpy;iy/
81.
vd;w
tistiuapy;
btl;Lj;Jz;L.
1/
2. 0, 6 3/
4/ 
82.
vd;w
tistiu vjidg; bghWj;J rkr;rPu; bgw;Ws;sJ/
1/
-mr;ir
kl;Lk; 2/
mr;ir
kl;Lk;
3.
,U
mr;Rf;fis 4/ ,U mr;Rf;fs;
kw;Wk; Mjpia
83/
Xu; ,ul;ilg;gilr;
rhu;bgdpy;
1/ 0 2/
3/
4/ 
3/
4/ 
84/
1/
2/
3/
4/
1/
2/
3/
4/
85/
vd;w tistiu 
Mfpa
nfhLfs;
mr;R
Mfpatw;why; milg;gLk; gug;gpid
-mr;irg;
bghWj;J RHw;wpdhy; Vw;gLk; jplg;bghUspd; tisgug;g[
1/
2/
3/
4/ 
2/
3/
4/ 
86/ 
vdpy; 
1.
2/ 
3/
4/ 
87/
vd;w tistiuf;F
apypUe;J
tiu
cs;s tpy;ypd; ePsk;/
1/
2/
3/
4) 
2/
3/
4) 
88/
1. -
2.
3. -
4) 2
1. -
2.
3. -
4) 2
89.
vd;w tiff;bfGr;
rkd;ghl;od; tupir kw;Wk; go
1/
2/
3/
4/ 
90/
vd;w tiff;bfGr;
rkd;ghl;od; tupir kw;Wk; go
1/
2/
3/
4/ 
91/
vd;w tiff;bfGr;
rkd;ghl;od; tupir kw;Wk; go
1/
2/
3/
4/ 
92/
vd;w tiff;bfGr;
rkd;ghl;od; tupir kw;Wk; go
1/
2/
3/
4/ 
93/
vd;w neupa tiff;bfGr; rkd;ghl;oy;
kw;Wk;
Mfpait
,d; rhu;g[fshf ,Ug;gpd;/ jPu;t[
1/
2/ 
3/
4/ 
94/
vd;w neupa tiff;bfGr; rkd;ghl;oy; P kw;Wk;
Mfpait
,d; rhu;g[fshf
,Ug;gpd;. jPu;t[
1/
2/ 
3/
4/ 
95. xU
bjhlh; rktha;g;g[ khwp
1. Kot[w;w fzj;jpd;
kjpg;g[fisg; bgWfpwJ.
2. Fwpg;gpl;l xU
,ilbtspapYs;s vy;yh kjpg;g[fisa[k; bgWfpwJ
3. vz;zpyl';fh
kjpg;g[fisg; bgWfpwJ/
4.
xU Kot[w;w my;yJ vz;zplj;jf;f kjpg;g[fisg;
bgWfpwJ/
96. xU
bjhlh; rktha;g;g[ khwp X ,d;
epfH;jft[ mlh;j;jpr; rhh;g[ ‘f(x)’ vdpy;
1.
2.
3.
4. 
97. ,ay;epiyg;
gutiyg; bghWj;J gpd;tUtdtw;Ws; vit my;yJ vJ rhp ?
a. X =
(ruhrhp) vd;w nfhl;ow;Fr; rkr;rPuhdJ b. ruhrhp
=
,ilepiy mst[ = KfL
c. xU Kfl;Lg; guty; d.
X =
tpy; tist[ khw;Wg;g[s;spfs; cs;sd/
1. a, b kl;Lk; 2. b,d kl;Lk; 3.
a.b,c kl;Lk; 4.midj;Jk;
98. jpl;l
,ay;epiyg; gutypd; ruhrhpa[k; gutw;goa[k;
1.
2.
3.
0, 1 4. 1, 1
99. X xU bjhlh; rktha;g;g[ khwp vdpy; vJ jtW>
1.
2.

3.
4.

100. ,ay;epiyg;
gutypd; nghJ fPnH bfhLf;fg;gl;l Tw;wpy; vJ rhpahdjy;y>
1. nfhl;lf;bfG g[{r;rpakhFk;/ 2. ruhrhp = ,ilepiy mst[ = KfL
3. tist[ khw;Wg;g[s;spfs; X =
4. tistiuapd;
kPg;bgU cauk; 
No comments:
Post a Comment