Thursday, 19 April 2018

Olympia Academy 

NEET/JEE Main/IIT Foundation Courses Tirupattur, Vellore-D.t

Olympia Academy

II-50% - ONE MARK - REVISION EXAM   -  2016       A
MATHEMATICS
    CLASS : XII                                                                                       MARKS : 100
                                          [ CHAP – 5,6,7,8,10 B.B & C.B ]        TIME : 1.00 hrs


I. Choose the correct answer :                                                                 100 x 1 = 100

1.         The gradient of the curve  y = -2x3 +3x + 5 at  x = 2 is 
            1) -20                           2) 27                            3) -16                           4) -21 
2.         The velocity v of a particle moving along a straight line when at a distance x from the origin is
            given by   a + bv2 = x2   where a and b are constants. Then the acceleration is
            1)                             2)                             3)                             4)
3.         The slope of the normal to the curve  y = 3x2  at the point whose  x coordinate is 2 is
            1)                            2)                            3)                            4)  
4.         The equation of the normal to the curve  at the point    is
            1) 3  = 27t - 80         2) 5  = 27 t -80         3) 3 = 27 t + 80        4)         
5.         The parametric equation of the curve  x2/3 + y2/3 = a2/3  are
            1) x = a sin3 q , y = a cos3 q                 2) x = a cos3 q  , y = a sin3 q               
      3) x = a3 sin q , y = a3 cos q                 4) x = a3 cos q  , y = a3 sin q
6.         What is the surface area of a sphere when the volume is increasing at the same rate as its radius?
            1) 1                              2)                          3) 4                           4)                        
7.         If  y  = 6x - xand  x  increases at the rate of  5 units per second, the rate of change of slope when  x = 3  is
            1) -90 units/sec            2)90 units/sec              3)180 units/sec            4)-180 units/sec
8.         The angle between  the parabolas y2 = x and x2 = y at the origin is
            1)              2)                 3)                            4)
9.         The value of ‘a’ so that the curves y = 3ex and  y = intersect orthogonally is 
            1) -1                             2) 1                              3)                              4) 3    
10.       The Rolle’s constant for the function             y = x2 on [ -2, 2]  is
            1)                        2) 0                              3) 2                              4) -2
11.       The value of  ‘c’ of  Lagranges Mean Value  Theorem  for  f (x) =   when a = 1 and b = 4 is
1)                             2)                             3)                             4)
12.       If   f (a) = 2;   f ' (a) = 1 ;  g (a) = -1 ;  g ' (a) = 2,  then the value of   is
            1) 5                              2) -5                             3) 3                              4) -3




13.       The function  f (x) = x2 is decreasing in
            1) ( -  )              2) ( - , 0 )                 3) ( 0,   )                  4) ( -2, )
14.       The least possible perimeter of a rectangle of  area 100 m2  is
            1. 10                            2. 20                            3. 40                            4.  60
15.       Which of  the following curves is concave down?
            1) y = - x 2                   2) y = x 2                     3) y = e x                      4) y = x2 + 2x - 3
16.       If  u = x y  then  is equal to
            1) yxy-1                         2) u log x                     3) u log y                     4) xyx-1
17.       The curve  y2(x-2) = x2(1+x) has
            1) an asymptote parallel to x-axis                   2) an asymptote parallel to y-axis
            3) asymptotes parallel to both axes                 4) no asymptotes
18.       If  u = log ,  then   is
            1) 0                              2) u                              3) 2 u                           4) u-1
19.       An asymptote to the curve y2 (a + 2x) = x2 (3a - x) is
            1) x = 3a                      2) x = -                    3) x =                      4) x = 0
20.       If  u = f then  is equal to
            1) 0                              2) 1                              3) 2u                            4) u
21.       If  u = sin - 1 and  f = sinu, then  f  is a homogeneous function of  degree
            1) 0                              2) 1                              3) 2                              4) 4
22.       If  u = , then  

            1)                        2) u                              3)                        4) - u
23.       Identify the true statements in the following:
            (i)         If  a curve is symmetrical about the origin, then it is symmetrical about both axes.
            (ii)        If a curve is symmetrical about both the axes, then it is symmetrical about the origin.
            (iii)       A curve  f (x, y) = 0  is symmetrical about the line  y = x  if  f (x, y) =  f (y, x).
            (iv)       For the curve f (x, y) = 0,  if   f (x, y) = f (-y, - x), then it is symmetrical about the origin.
            1. (ii), (iii)                    2. (i), (iv)                     3. (i), (iii)                     4. (ii), (iv)
24.       The percentage error in the 11th  root of  the number 28 is approximately _________ times the      
            percentage  error in 28.
            1)                           2)                            3) 11                            4) 28
25.       The curve  9y2 = x2(4-x2) is symmetrical about
            1. y-axis                       2. x-axis                       3. y = x                        4. both the axes
26.       The value of  is       1)                2)                3) 0                  4)
27.    The value  ofis              1)                2) 0                  3)                4)


28.       The value of is
            1)                            2)                           3)                           4)
29.       The value of  is
            1.                           2.                            3. 0                              4.
30.       The value of is
            1)                             2)                            3)                            4) 0
31.       The area of  the region bounded by the graph of  y = sinx  and  y = cosx  between  x = 0 and
            x =   is
            1)                     2)                     3) 2                  4) 2
32.       The area bounded by the parabola  y2 = x  and its latus rectum is
            1)                             2)                             3)                             4)
33.    The volume, when the curve   y =   from  x = 0  to x = 4 is rotated about x- axis is
            1) 100                      2)                      3)                      4)
 34.      Volume of solid obtained by revolving the area of  the ellipse   about  major and minor axes are in the ratio
            1) b2 : a2                       2) a2 : b2                       3) a : b                         4) b : a
35.       The length of the arc of  the curve  x2/3 + y2/3 = 4 is
            1) 48                            2) 24                            3) 12                            4) 96
36.       The curved surface area of  a sphere of  radius 5, intercepted between two parallel planes of distance 2 and 4 from the centre is
            1) 20                  2) 40                        3)10                         4) 30
37.       The value of  is
            1) 0                              2) 2                              3) log 2                        4) log 4
38.       The value of is
            1.                             2.                              3. 0                              4.  
39.       The area bounded by the line  y = x, the x-axis, the ordinates   x = 1,  x = 2 is
            1)                             2)                             3)                             4)
40.       The area between the ellipse    and its auxillary circle is
            1) b(a - b)                 2) 2a (a - b)              3) a (a - b)                4) 2b ( a - b)
41.       The integrating factor of  is     
            1) log x                        2) x2                             3) ex                             4) x


42.       The integrating factor of   dx + xdy = e-y sec2 y dy  is
            1) ex                             2) e-x                            3) ey                             4) e-y
43.       The solution of  + mx = 0 , where  m < 0 is  
            1) x = cemy                   2) x = ce-my                  3) x = my + c               4) x = c
44.       The differential equation is
            1. of order 2 and degree 1                              2. of order 1 and degree 2
            3. of order 1 and degree 6                              4. of order 1 and degree 3
45.       The differential equation of all circles with centre at the origin is
            1) x dy + y dx = 0       2) x dy - y dx = 0         3) x dx + y dy = 0       4) x dx - y dy = 0
46.       The complementary function of  (D2 + 1 ) y = e2x  is
            1) (Ax + B)ex              2) A cos x +B sinx      3) (Ax + B)e2 x            4) (Ax + B)e-x
47.       The  differential equation of  the family of lines  y = mx  is
            1) = m                   2) y dx - xdy = 0          3)                   4) ydx + xdy = 0
48.       The degree of  the differential equation c= , where c is a constant is     
            1) 1                              2) 3                              3) -2                             4) 2
49.       The differential equation satisfied by all the straight lines in  xy-plane is
            1.= a constant       2.                   3. y+= 0                4.
50.       The differential equation obtained  by eliminating  a  and  b  from  y = ae3x + be-3x  is
            1)          2)          3)       4)
51.       If   f ¢(x) =  and  f (1) = 2, then   f (x) is
            1)         2)            3)            4)
52.       The particular integral of  (3D2 + D-14)y = 13e2x  is
            1) 26xe2x                      2)13xe2x                          3) xe2x                          4)
53.       The particular integral of  the differential equation f (D) y = eax , where  f (D) = (D-a) g(D),
            g(a) ¹0 is
            1) meax                         2)                        3) g(a)eax                      4)
54.       If  cos x  is an integrating factor of the differential equation + Py = Q , then P =
            1) -cot x                       2) cot x                                    3) tan x                                    4) -tan x
55.       The integrating factor of is
            1) ex                             2) log x                        3)                             4) e-x






56.       A random variable X has the following probability distribution
X
0
1
2
3
4
5
P(X=x)
2a
3a
4a
5a
      Then  P(1 x 4)  is
      1)                           2)                             3)                            4) 
57.       X is a discrete random variable which takes the  values 0, 1, 2 and P(X=0) =
            P(X=1) = , then the value of  P(X =2 ) is
            1.                          2.                          3.                          4.
58.       Given  E(X+ c) = 8 and  E(X-c) = 12  then the value of  c is
1) -2                             2) 4                              3) -4                             4) 2
59.       Variance of the random variable X  is 4.  Its mean is 2. Then  E(X2) is
            1) 2                              2) 4                              3) 6                              4) 8
60.       Var (4X + 3)  is
            1) 7                              2) 16 Var(X)               3) 19                            4) 0
61.       The mean of a binomial distribution is 5 and its its standard deviation is 2.  Then the value
            of  n and p are
            1.                   2.                  3.                   4.
62.       In 16 throws of a die getting an even number  is considered a success. Then the variance  of
            the successes is
            1.  4                             2.  6                             3.  2                             4. 256
63.       If  2  cards are drawn from a well shuffled pack of  52 cards, the probability that
            they  are of  the same colours  without replacement, is
1)                             2)                           3)                           4)
64.       If  a  random variable X follows Poisson distribution such that  E(X2 ) = 30, then the variance of  the distribution is
            1. 6                              2. 5                              3. 30                            4. 25
65.       For a Poisson distribution with parameter    =0.25 the value of the 2nd   moment about the origin is         
            1)0.25                          2)0.3125                      3)0.0625                      4)0.025
66.       If   is a p.d. f. of a normal distribution with mean ,  then   is
            1. 1                              2. 0.5                           3.  0                             4. 0.25
67.        If   is a p.d. f. of  a normal variate X  and     X ~ N(, ),   then   is
            1. undefined                2. 1                              3.  0.5                          4. -0.5
68.       The marks secured by 400 students in a Mathematics test were normally distributed with mean 65.  If  120 students got more marks above 85, the number of students securing marks between 45 and 65 is
1)120                           2)20                             3)80                             4)160
69.       The random variable  X  follows normal distribution f(x) = c .  Then the value of  ‘c’ is
      1)                        2)                          3) 5                        4)
70.       In a Poisson distribution if  P(X = 2) =P(X=3)  then the value of its parameter  is
      1) 6                              2) 2                              3) 3                              4) 0
                                   

71.       Let  ‘h'  be the height of the tank.  Then the rate of change of pressure ‘p’ of the tank with respect to height is
            1.                           2.                           3.                           4.
72.       Food pockets were dropped from an helicopter during the flood and distance fallen in ‘t’ seconds is given by (g = 9.8 m/).  Then  the speed of the food pocket after it has fallen for ‘2’ seconds is
            1. 19.6 m/sec               2. 9.8 m/sec                 3. -19.6 m/sec              4. -9.8 m/sec
73.       A continuous graph  y = f (x) is such that  as  at . Then  
            has a   
            1. vertical tangent y =                                 2. horizontal tangent x =                
            3. vertical tangent x =                                 4. horizontal tangent y =
74.       The point that separates the convex part of a continuous curve from the concave part is
            1. the maximum point                                                 2. the minimum point 
            3. the inflection point                                                  4. critical point
75.       Which of the following statement is incorrect?
            1. Initial velocity means velocity at  t = 0
            2. Initial acceleration means acceleration at  t = 0
            3. If the motion is upward, at the maximum height, the velocity is not zero
            4. If the motion is horizontal, v = 0 when the particle comes to rest
76.       In the law of mean, the value  satisfies the condition
            1.                       2.                       3.                        4.
77.       If  is a differentiable function of x and y ;  x and y are differentiable functions of ‘t’ then
     1.                             2.
            3.                             4.
78.       The differential on y of the function  is
     1.                     2.                 3.                    4. 0
79.       The differential of   is
     1.                                      2.
            3.                                                    4.
80.       The curve has
            1. only one loop between x=0 and x=1
            2. two loops between x=-1 and x=0
            3. two loops between x=-1 and 0; 0 and 1
            4. no loop
81.       The x-intercept of the curve  is
     1.                           2.  6, 0                         3.                           4.
82.       The curve  is symmetrical about
            1.  x-axis only              2. y-axis only               3. both the axes           4. both the axes and origin
83.       If  f(x) is even function is
                1. 0                                     2. 2    3.                   4. -2
84.          is
     1.            2.        3.        4.
85.       The surface area obtained by revolving the area bounded by the curve y= f(x), the two ordinates x=a, x=b and x-axis, about x-axis is
            1.      2.      3. 2         4.2
86.       If  , then
            1.                        2.
            3.                           4.
87.       The arc length of the curve  y = f(x) from x=a to x=b is
            1.                                                      2.     
            3. 2                                             4.2
88.       is
            1. -           2.           3. -           4. 2
89.       The order and degree of  the differential equation   are
            1.  2,  1                        2.  1,  2                                    3.  1,  1                                    4.  2,2
90.       The order and degree of  the differential equation   are
            1.  1,  1                        2.  1,  2                        3.  2,  1                                    4.  0, 1
91.       The order and degree of  the differential equation   are
            1.  2,  1                        2.  1,  2                        3.  2,                                    4.  2,2
92.       The order and degree of  the differential equation   are
            1.  1,  1                        2.  1,  2                        3.  2,  1                                    4.  2,2
93.       The solution of a linear differential equation  where P and Q are functions of  x is
            1.                                2.
            3.                                4.
94.       The solution of a linear differential equation  where P and Q are functions of  y is
            1.                                2.
            3.                                4.


95.       A continuous random variable takes
            1. only  a finite number of values
            2. all  possible values between certain given limits
            3. infinite  number of values
            4. a finite or countable number of values
96.       A continuous random variable X has probability density function ‘f(x)’ then
            1.             2.                  3.                   4.
97.       Which of the following is or are correct regarding normal distribution curve ?
            a. symmetrical about the line X = (mean)
            b. Mean = median = mode
            c. unimodal
            d. Points of inflection are at X =
            1. a, b only                  2. b,d only                   3. a.b,c only                 4. all
98.       For a standard normal distribution the mean and variance are
            1.                       2.                        3. 0, 1                          4. 1, 1
99.       If  X is a continuous random variable then which of the following is incorrect ?
            1.                                                2.
            3.                          4.
100.     Which of the following is not true regarding the normal distribution?
            1. skewness is zero.                                         2. mean = median = mode     
            3. the points of inflection are at X =   4.  maximum height of the curve is


























RKV MATRIC HIGHER SECONDARY SCHOOL – JEDARPALAYAM
II-50% - ONE MARK - REVISION EXAM   -  2016
MATHEMATICS
    CLASS : XII                                                                                   MARKS : 100
    DATE  :  05.11.16           [ CHAP – 5,6,7,8 & 10 B.B.& C.B ]        TIME    : 1.00 hrs




I. Choose the correct answer :                                                                 100 x 1 = 100
1.         x = 2 ,y; y = -2x3 +3x + 5 vd;w tistiuapd; rha;t[  
            1) -20                           2) 27                            3) -16                           4) -21 
2.         MjpapypUe;J xU neh;f;nfhl;oy; x bjhiytpy; efUk; g[s;spapd; jpirntfk; v vdt[k; a +bv2 = x2   vdt[k; bfhLf;fg;gl;Ls;sJ/ ,';F a kw;Wk; b khwpypfs;/ mjd; KLf;fk; MdJ
            1)                             2)                             3)                             4)
3.         y = 3x2  vd;w tistiuf;F x ,d; Maj;bjhiyt[ 2 vdf; bfhz;Ls;s g[s;spapy; br';nfhl;od; rha;thdJ               1)                            2)                            3)                            4)  
4.           vDk; tistiuf;F g[s;sp   vd;w g[s;spapy; br';nfhl;od; rkd;ghL
            1) 3  = 27t - 80         2) 5  = 27 t -80         3) 3 = 27 t + 80        4)         
5.         vDk; tistiuapd; Jiz myFr; rkd;ghLfs;
            a) x = a sin3 q , y = a cos3 q                 c) x = a cos3 q  , y = a sin3 q               
      b) x = a3 sin q , y = a3 cos q                 d) x = a3 cos q  , y = a3 sin q
6.         xU nfhsj;jpd; fd mst[ kw;Wk; Muj;jpy; Vw;gLk; khWtPj';fs; vz;zstpy; rkkhf ,Uf;Fk; nghJ nfhsj;jpd; tisgug;g[
            1) 1                              2)                          3) 4                           4)                        
7.         y = 6x - x3  nkYk; x MdJ tpdhof;F 5 myFfs; tPjj;jpy; mjpfhpf;fpd;wJ/
     x = 3 vDk; nghJ mjd; rha;tpd; khWtPjk;
            1)  -90 myFfs;/tpdho                                            3) 90 myFfs;/tpdho         
            3) 180 myFfs;/tpdho                                           4) -180 myFfs;/tpdho
8.         y2 = x kw;Wk; x2 = y vd;w gutisa';fSf;fpilna Mjpapy; mika[k; nfhzk;  
            1)               2)                 3)                            4)
9.         y = 3ex  kw;Wk;  y =   vd;Dk; tistiufs; br';Fj;jhf btl;of; bfhs;fpd;wd vdpy; ‘a’ ,d; kjpg;g[                  1) -1                             2)1                               3)                  4) 3    
10.       y = x2 vd;w rhh;gpw;F  [ -2, 2] ,y; nuhypd; khwpyp
            1)                        2) 0                              3) 2                              4) -2




11.       a = 1 kw;Wk;  b = 4 vdf; bfhz;L. f (x) =  vd;w rhh;gpw;F byf;uh";rpapd; ,ilkjpg;g[j; njw;wj;jpd;go mika[k; ‘c’ ,d; kjpg;g[
1)                             2)                             3)                             4)
12.       f (a) = 2;   f ' (a) = 1 ;  g (a) = -1 ;  g ' (a) = 2  vdpy;    ,d; kjpg;g[
 
            1) 5                              2) -5                             3) 3                              4) -3
13/  f (x) = x2  vd;w rhh;g[ ,w';Fk; ,ilbtsp
            1) ( -  )              2) ( - , 0 )                 3) ( 0,   )                  4) ( -2, )
14.       100 kP 2 gug;g[ bfhz;Ls;s brt;tfj;jpd; kPr;rpW Rw;wst[
            1. 10                            2. 20                            3. 40                            4.  60
15.   gpd;tUk; tistiufSs; vJ fPH;nehf;fp FHpt[ bgw;Ws;sJ>
            1) y = - x 2                   2) y = x 2                     3) y = e x                      4) y = x2 + 2x - 3
16.       u = x y  vdpy; f;Fr; rkkhdJ
            1) yx  y-1                       2) u log x                     3) u log y                     4) xy x-1
17.       y 2 ( x - 2 ) = x2 ( 1 + x ) vd;w tistiuf;F
            1) x - mr;Rf;F ,izahd xU bjhiyj; bjhLnfhL cz;L
            2) y - mr;Rf;F ,izahd xU bjhiyj; bjhLnfhL cz;L
            3) ,U mr;RfSf;Fk; ,izahd bjhiyj; bjhLnfhLfs; cz;L
           4) bjhiyj; bjhLnfhLfs; ,y;iy
18.       u = log  vdpy;  vd;gJ
            1) 0                              2) u                              3) 2u                            4) u-1
19.       y2 (a + 2x) = x2 (3a - x)  vd;w tistiuapd; bjhiyj; bjhLnfhL
            1) x = 3a                      2) x = -a/2                    3) x = a/2                     4) x = 0
20.       u = f vdpy;.  ,d; kjpg;g[
            1) 0                              2)1                               3) 2u                            4) u
21.       u = sin - 1    kw;Wk; f = sin u  vdpy;. rkgoj;jhd rhh;g[ f  ,d;go
            1) 0                              2) 1                              3) 2                              4) 4
22.       u =   vdpy; 1)            2) u                  3)            4) - u
23/  gpd;tUtdtw;Ws; rhpahd Tw;Wfs;:
            1) xU tistiu Mjpia bghWj;J rkr;rPh; bgw;wpUg;gpd; mJ ,U
     mr;Rfisg; bghWj;JK; rkr;rPh; bgw;wpUf;Fk;/
            2) xU tistiu ,U mr;Rfisg; bghWj;J rkr;rPh; bgw;wpUg;gpd; mJ
     Mjpiag; bghWj;Jk; rkr;rPh; bgw;wpUf;Fk;/
            3) f (x , y) = 0 vd;w tistiu y = x vd;w nfhl;ilg; bghWj;J rkr;rPh;
     bgw;Ws;sJ vdpy; f (x , y) = f ( y , x)
            4) f (x , y) = 0 vd;w tistiuf;F f (x , y) =  f (-y , -x ) cz;ikahapd; mJ
     Mjpiag; bghWj;J rkr;rPh; bgw;wpUf;Fk;/
            1) (ii), (iii)                    2) (i), (iv)                                 3) (i), (iii)                     4)(ii), (iv)        

24.       28 ,d; 11 Mk; go rjtpfpjg; gpiH njhuhakhf 28 ,d; rjtpfpjg; gpiHiag; nghy; _____ kl';fhFk;/
            1)                           2)                            3) 11                            4) 28
25.       9y2 = x2(4-x2) vd;w tistiu vjw;F rkr;rPh;>
            1) y -mr;R                  2) x -mr;R                  3) y = x                        4) ,U mr;Rfs;
26.        ,d; kjpg;g[    1)                2)                3)0                   4)
27.       ,d; kjpg;g[                1)                2) 0                  3)                4)
28.        ,d; kjpg;g[                   1)                2)               3)               4)
29.           ,d; kjpg;g[                     1.               2.                3. 0                  4.
30.       ,d; kjpg;g[             1)                 2)                3)                4) 0
31.       x = 0 ,ypUe;J x =     tiuapyhd y = sinx  kw;Wk; y = cos x vd;w tistiufspd; ,ilg;gl;l gug;g[      
            1)                     2)                     3) 2                  4) 2
32.       gutis y2 = x f;Fk; mjd; brt;tfyj;jpw;Fk; ,ilg;gl;l gug;g[
            1)                             2)                             3)                             4)
33.        y =  vd;w tistiu  x = 0 tpypUe;J x = 4 tiu x- mr;ir mr;rhf
     itj;Jr; RHw;wg;gLk; jplg;bghUspd; fd mst[  
            1) 100                      2)                      3)                                  4)
34.        vd;w ePs;tl;lj;jpd; gug;ig bel;lr;R. Fw;wr;R ,tw;iw bghWj;Jr;       RHw;wg;gLk; jplg;bghUspd; fd mst[fspd; tpfpjk;
            1) b2 : a2                       2) a2 : b2                       3) a : b                         4) b : a
35.        x2/3 + y2/3 = 4  vd;w tistiuapd; tpy;ypd; ePsk;
            1) 48                            2) 24                            3) 12                            4) 96
36/ Muk; 5 cs;s nfhsj;ij js';fs; ikaj;jpypUe;J 2 kw;Wk; 4 J}uj;jpy; btl;Lk; ,U ,izahd js';fSf;F ,ilg;gl;l gFjpapd; tisg;gug;g[   
            1) 20                                    2) 40                                    3)10                         4) 30
37.        ,d; kjpg;g[
            1)0                               2) 2                              3) log 2                        4) log 4
38.        ,d; kjpg;g[
            1.                             2.                             3. 0                              4.  




39.       y = x vd;w nfhl;ow;Fk; x- mr;R. nfhLfs;  x = 1 kw;Wk; x = 2 Mfpatw;wpw;Fk; ,ilg;gl;l mu';fj;jpd; gug;g[
            1)                             2)                             3)                             4)
40.         vd;w ePs; tl;lj;jpw;Fk; mjd; Jiz tl;lj;jpw;Fk; ,ilg;gl;l gug;g[
            1) b(a - b)                 2) 2a (a - b)              3) a (a - b)                4) 2b ( a - b)
41.        vd;w tiff;bfGr; rkd;ghl;od; bjhiff; fhuzp
            1) log x                        2) x2                             3) ex                             4) x
42.       dx + xdy = e-y sec2 y dy ,d; bjhiff; fhuzp
            1) ex                             2) e-x                            3) ey                             4) e-y
43.       m < 0,  Mf ,Ug;gpd; + mx = 0  ,d; jPh;t[  
            1) x = cemy                   2) x = ce-my                  3) x = my + c               4) x = c
44.        vd;w tiff;bfGtpd;
            1) thpir 2 kw;Wk; go 1                                   2) thpir 1 kw;Wk; go 2                      
            3) thpir 1 kw;Wk; go  6                                   4) thpir 1 kw;Wk; go 3
45/ Mjpg;g[s;spia ikakhff; bfhz;l tl;l';fspd; bjhFg;gpd; tiff;bfGr;
     rkd;ghL  
            1) x dy + y dx = 0       2) x dy - y dx = 0        3) x dx + y dy = 0       4) x dx - y dy = 0
46.       (D2 + 1 ) y = e2x  ,d; epug;g[r; rhh;g[
            1) (Ax + B)ex              2) A cos x +B sinx      3) (Ax + B)e2 x            4) (Ax + B)e-x
47.       y = mx vd;w neh;f;nfhLfspd; bjhFg;gpd; tiff;bfGr; rkd;ghL
            1) = m                    2) y dx - xdy = 0         3)                   4) ydx + xdy = 0
48.       c =  vd;w tiff;bfGr; rkd;ghl;od; go  
            1) 1                              2) 3                              3) -2                             4) 2
49.       xy- jsj;jpYs;s vy;yh neh;f;nfhLfspd; bjhFg;gpd; tiff; bfGr; rkd;ghL  
            1.= xU khwpyp 2.                   3. y+= 0                 4.
50.       y = ae3x + be-3x  vd;w rkd;ghl;oy; a iaa[k; b iaa[k; ePf;fpf; fpilf;Fk;
     tiff;bfGr; rkd;ghL
            1)          2)          3)       4)
51.       ¢(x) =  kw;Wk;  f (1) = 2 vdpy;   f (x) vd;gJ   
            1)         2)            3)            4)
52.       (3D2 + D-14)y = 13e2x  ,d; rpwg;g[r; jPh;t[
            1) 26xe2x                      2)13xe2x                          3) xe2x                          4) x2/2e2x




53.       f (D) = (D-a) g(D) , g(a) ¹0 vdpy; tiff;bfGr; rkd;ghL f (D) y = eax  ,d;
     rpwg;g[j; jPh;t[                     
            1) meax                         2)                        3) g(a)eax                      4)
54.       +Py = Q  vd;w tiff;bfGr; rkd;ghl;od; bjhiff; fhuzp cos x 
            vdpy;.  P ,d; kjpg;g[
            1) -cot x                       2) cot x                        3) tan x                        4) -tan x
55.        ,d; bjhiff; fhuzp
            1) ex                             2) log x                        3)                             4) e-x
56.       X  vd;w rktha;g;g[ khwpapd; epfH;jft[g; guty; gpd;tUkhW:

X
0
1
2
3
4
5
P(x = X)
1/4
2a
3a
4a
5a
1/4
            P(1£ x £ 4)  ,d; kjpg;g[

      1)                           2)                             3)                            4) 
57.       X  vd;w xU jdpepiy rktha;g;g[ khwp 0 , 1 , 2 vd;w kjpg;g[fisf; bfhs;fpwJ/ nkYk; P (X= 0) = , vdpy; P (X = 1) =  , vdpy; P(X = 2 ) ,d; kjpg;g[
            1.                         2.                         3.                         4.
58.       E(X+ c) = 8  kw;Wk; E (x-c) = 12  vdpy; c ,d; kjpg;g[
            1) -2                             2) 4                              3) -4                             4) 2
59.       X  vd;w rktha;g;g[ khwpapd; gutw;go nkYk; ruhrhp 2 vdpy; E(X2) ,d;
     kjpg;g[
            1) 2                              2) 4                              3) 6                              4) 8
60.       Var (4X + 3) ,d; kjpg;g[
            1) 7                              2) 16Var(X)                3) 19                            4) 0
61.       xU <UWg;g[g; gutypd; ruhrhp 5 nkYk; jpl;ltpyf;fk; 2 vdpy; n kw;Wk;  
            p ,d; kjp;gg[fs; 
            1.                   2.                  3.                   4.
62.       xU gfilia 16 Kiwfs; tPRk; nghJ. ,ul;ilg;gil vz; fpilg;gJ btw;wpahFk; vdpy; btw;wpapd; gutw;go  
            1)4                               2)6                               3)2                               4)256  
63.       ed;F fiyf;fg;gl;l 52 rPl;Lfs; bfhz;l rPl;Lf;fl;oypUe;J 2 rPl;Lfs; vLf;fg;gLfpd;wd/ ,uz;Lk; xnu epwj;jpy; ,Uf;f epfH;jft[  
            1)                             2)                           3)                           4)
64.       xU rktha;g;g[ khwp gha;!hd; gutiyg; gpd;gw;WfpwJ/ nkYk; E(X2) = 30  vdpy; gutypd; gutw;go  
            1)6                               2)5                               3)30                             4)25



65.       gha;!hd; gutypd; gz;gsit  =0.25 vdpy; ,uz;lhtJ tpyf;fg; bgUf;Fj; bjhif  
           1)0.25                           2)0.3125                      3)0.0625                      4)0.025
66.       xU ,ay;epiyg; gutypd; epfH;jft[ mlh;j;jpr; rhh;g[ f (x) ,d; ruhrhp
     m  vdpy; ,d; kjpg;g[
            1)1                               2)0.5                            3)0                               4)0.25
67.       xU ,ay;epiy khwp ,d; epfH;jft[ mlh;j;jpr; rhh;g[ f(x) kw;Wk;   
             X~N(m , s2) vdpy;
            1) tiuaWf;f KoahjJ      2)1                   3) 0.5                           4) -0.5
68.       400  khzth;fs; vGjpa fzpjj; njh;tpd; kjpg;bgz;fs; ,ay;epiyg; gutiy xj;jpUf;fpwJ/ ,jd; ruhrhp 65.  nkYk; 120 khzth;fs;  85 kjpg;bgz;fSf;F nky; bgw;wpUg;gpd;. kjpg;bgz;fs; 45 ,ypUe;J 65 f;Fs; bgWk; khzth;fspd; vz;zpf;if
            1)120                           2)20                             3)80                             4)160
69.       xU rktha;g;g[ khwp  X , ,ay;epiyg; guty; f(x)=c   I gpd;gw;WfpwJ vdpy; c ,d; kjpg;g[
      1)                        2)                          3) 5                        4)
70.       xU gha;!hd; gutypy; P(X = 2) = P(X =3) vdpy;. gz;gsit  ,d; kjpg;g[
            1)6                               2)2                               3)3                               4)0
71/  xU ePu;j; bjhl;oapd; cauk;  vd;f/ mj;bjhl;oapd; mGj;jk;   MdJ cauj;ijg; bghWj;J khWk; tPjk;
     1/               2/               3/              4/
72/ bts;sg; bgUf;fj;jpd; nghJ K:yk; ,lg;gl;l czt[g; bghUl;fs;
     tpdhoapy; fle;j J}uk;   kPtpdho2)  vdpy; mJ nghlg;gl;l  2?tpdhofSf;Fg; gpd; mg;bghUspd; ntfk;/
     1/ 19/6 kPtpdho                 2/ 9/8 kPtpdho
     3/ ?19/6 kPtpdho                4/ ?9/8 kPtpdho       
73/ bjhlu;r;rpahd tistiu MdJ vd;w g[s;spapy;  vDk;nghJ  vdpy; f;F
     1/   vd;w epiyf;Fj;jhd bjhLnfhL cz;L
     2/   vd;w fpilkl;l bjhLnfhL cz;L
     3/   vd;w epiyf;Fj;jhd bjhLnfhL cz;L
     4/   vd;w fpilkl;l bjhLnfhL cz;L
74/ xU bjhlu;r;rpahd tistiuapy; FHpt[ gFjpapypUe;J Ftpt[ gFjpahf khw;wk; bgWk; g[s;sp
     1/ bgUk g[s;sp                    2/ rpWk g[s;sp
     3/ tist[ khw;Wg; g[s;sp                4/ khWepiyg;g[s;sp
75.       fPH;f;fhQqk; Tw;wpy; vJ rupay;y>
     1  bjhlf;f jpirntfk; vd;gJ tpYs;s jpirntfk;
     2  bjhlf;f KLf;fk; vd;gJ tpYs;s KLf;fk;
     3  xU Jfs; br';Fj;jhfr; brd;W mjpfgl;r cauk; mila[k; nghJ mjd;
       jpirntfk; g{r;rpaky;y
     4/  xU JfshdJ fpilkl;l ,af;fj;jpy; njf;f epiyf;F tUk; neuj;jpy;  


76/  ,ilkjpg;g[ tpjpapd;go tpd; kjpg;g[ ve;j epge;jidia  epiwt[ bra;a ntz;Lk;/
    1/                    2.                      3.                       4.
77/ vd;gJ kw;Wk; y ,y; tifaplj;jf;f rhu;g[/ nkYk;  kw;Wk;  vd;git My; Md tifaplj;jf;f rhu;g[fs; vdpy;
     1/                              2/
     3/                              4/
78.       vdpy; ,d; tifaPL
     1/                  2.                 3.                    4. 0
79.       ,d; tifaPL
     1/           2.              3.               4.
80.       vd;w tistiu
     1/ kw;Wk; f;fpilna xU fz;zp bgw;Ws;sJ
     2.  kw;Wk;  f;fpilna ,U fz;zpfis bgw;Ws;sJ
     3/ kw;Wk;  kw;Wk; 1 fSf;fpilna ,U fz;zpfs; bgw;Ws;sJ/
     4/ fz;zpfs; VJk; bgwtpy;iy/
81.       vd;w tistiuapy;  btl;Lj;Jz;L.
     1/                                   2.  0, 6                         3/                         4/
82.       vd;w tistiu vjidg; bghWj;J rkr;rPu; bgw;Ws;sJ/
     1/ -mr;ir kl;Lk;            2/ mr;ir kl;Lk;
     3.   ,U mr;Rf;fis                                                4/ ,U mr;Rf;fs; kw;Wk; Mjpia
83/   Xu; ,ul;ilg;gilr; rhu;bgdpy;  
     1/ 0          2/    3/     4/ 
84/      1/    2/  3/   4/
85/  vd;w tistiu Mfpa nfhLfs;  mr;R Mfpatw;why; milg;gLk; gug;gpid -mr;irg; bghWj;J RHw;wpdhy; Vw;gLk; jplg;bghUspd; tisgug;g[
     1/      2/      3/ 4/
86/  vdpy;
            1.              2/
     3/             4/

87/  vd;w tistiuf;F apypUe;Jtiu cs;s tpy;ypd; ePsk;/
     1/      2/           3/ 4)
88/             1. -           2.           3. -4)  2
89.        vd;w tiff;bfGr; rkd;ghl;od; tupir kw;Wk; go
     1/           2/          3/          4/
90/   vd;w tiff;bfGr; rkd;ghl;od; tupir kw;Wk; go
     1/           2/          3/         4/
91/  vd;w tiff;bfGr; rkd;ghl;od; tupir kw;Wk; go
     1/           2/           3/        4/
92/   vd;w tiff;bfGr; rkd;ghl;od; tupir kw;Wk; go
     1/           2/           3/         4/
93/   vd;w  neupa tiff;bfGr; rkd;ghl;oy;  kw;Wk;  Mfpait,d; rhu;g[fshf ,Ug;gpd;/ jPu;t[
     1/           2/
     3/         4/
94/   vd;w  neupa tiff;bfGr; rkd;ghl;oy; P kw;Wk;  Mfpait   ,d; rhu;g[fshf ,Ug;gpd;. jPu;t[
     1/           2/
     3/         4/
95.       xU bjhlh; rktha;g;g[ khwp
            1. Kot[w;w fzj;jpd; kjpg;g[fisg; bgWfpwJ.
            2. Fwpg;gpl;l xU ,ilbtspapYs;s vy;yh kjpg;g[fisa[k; bgWfpwJ
            3. vz;zpyl';fh kjpg;g[fisg; bgWfpwJ/
            4. xU Kot[w;w my;yJ vz;zplj;jf;f kjpg;g[fisg; bgWfpwJ/
96.       xU bjhlh; rktha;g;g[ khwp  X  ,d; epfH;jft[ mlh;j;jpr; rhh;g[ ‘f(x)’ vdpy;
            1.             2.                  3.                   4.
97.       ,ay;epiyg; gutiyg; bghWj;J gpd;tUtdtw;Ws; vit my;yJ vJ rhp ?
            a. X = (ruhrhp) vd;w nfhl;ow;Fr; rkr;rPuhdJ       b. ruhrhp  =  ,ilepiy mst[ = KfL
            c. xU Kfl;Lg; guty;                   d. X =  tpy; tist[ khw;Wg;g[s;spfs; cs;sd/
            1. a, b kl;Lk;                      2. b,d kl;Lk;                       3. a.b,c kl;Lk;         4.midj;Jk;
98.       jpl;l ,ay;epiyg; gutypd; ruhrhpa[k; gutw;goa[k;
            1.                       2.                        3. 0, 1                          4. 1, 1
99.       X  xU bjhlh; rktha;g;g[ khwp vdpy; vJ jtW>
            1.                                                2.
            3.                          4.
100.     ,ay;epiyg; gutypd; nghJ fPnH bfhLf;fg;gl;l Tw;wpy; vJ rhpahdjy;y>
            1.  nfhl;lf;bfG g[{r;rpakhFk;/                          2.  ruhrhp  =  ,ilepiy mst[ = KfL
            3.  tist[ khw;Wg;g[s;spfs; X =               4.  tistiuapd; kPg;bgU cauk;


No comments:

Post a Comment